Combinação simples

Na combinação simples, a ordem dos elementos no agrupamento não interfere. São arranjos que se diferenciam somente pela natureza de seus elementos. Portanto, se temos um conjunto A formado por n elementos tomados p a p, qualquer subconjunto de A formado por p elementos será uma combinação, dada pela seguinte expressão:

Por exemplo, considere um conjunto com seis elementos que serão tomados dois a dois:

Uma importante aplicação de combinação simples é nas loterias, megassena, quina entre outras. A megassena consiste em uma cartela de 60 números dentre os quais devemos acertar 6 (prêmio principal), portanto temos uma combinação onde n = 60 e p = 6, sessenta números tomados seis a seis.

Na megassena existem 50.063.860 combinações, caso sejam tomadas seis a seis.

Em um curso de língua estrangeira estudam trinta alunos. O coordenador do curso quer formar um grupo de três alunos para realizar um intercâmbio em outro país. Quantas possíveis equipes podem ser formadas?
Resolução
O número de possíveis grupos pode ser dado pela expressão:

Poderão ser formadas 4060 equipes.

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: