Permutação simples

Podemos considerar a permutação simples como um caso particular de arranjo, onde os elementos formarão agrupamentos que se diferenciarão somente pela ordem. As permutações simples dos elementos P, Q e R são: PQR, PRQ, QPR, QRP, RPQ, RQP. Para determinarmos o número de agrupamentos de uma permutação simples utilizamos a seguinte expressão P = n!.
n! = n*(n-1)*(n-2)*(n-3)*….*3*2*1
Por exemplo, 4! = 4*3*2*1 = 24

Exemplo 1
Quantos anagramas podemos formar com a palavra GATO?
Resolução:
Podemos variar as letras de lugar e formar vários anagramas, formulando um caso de permutação simples.
P = 4! = 24

Exemplo 2
De quantas maneiras distintas podemos organizar as modelos Ana, Carla, Maria, Paula e Silvia para a produção de um álbum de fotografias promocionais?
Resolução:
Note que o princípio a ser utilizado na organização das modelos será o da permutação simples, pois formaremos agrupamentos que se diferenciarão somente pela ordem dos elementos.
P = n!
P = 5!
P = 5*4*3*2*1
P = 120
Portanto, o número de posições possíveis é 120.

Exemplo 3
De quantas maneiras distintas podemos colocar em fila indiana seis homens e seis mulheres:
a) em qualquer ordem
Resolução
Podemos organizar as 12 pessoas de forma distinta, portanto utilizamos
12! = 12*11*10*9*8*7*6*5*4*3*2*1 = 479.001.600 possibilidades

b) iniciando com homem e terminando com mulher
Resolução
Ao iniciarmos o agrupamento com homem e terminarmos com mulher teremos:
Seis homens aleatoriamente na primeira posição.
Seis mulheres aleatoriamente na última posição.

P = (6*6) * 10!
P = 36*10!
P = 130.636.800 possibilidades

Exemplo 4: 

A explicação dessa matéria é muito mais fácil quando utilizamos exemplos. Então, supondo que um restaurante “À la carte” tenha disponível 2 tipos de bifes, 2 tipos de arroz, 2 tipos de feijão e 3 tipos de bebidas. O dono do restaurante queira servir pratos contendo 1 elemento de cada tipo de comida. Nomeando os tipos de comida da forma “bife 1, arroz 1, arroz 2 … bebida 1, bebida 2, etc”, montamos o esquema:

Se formos seguir os caminhos descritos pelas linhas, encontraremos 24 caminhos, que são o total de possibilidades de pratos diferentes. Perceba que quanto mais opções de comidas, maior e mais complexo fica o esquema. Então, imagine como seria descobrir as possibilidades das placas de carro no sistema brasileiro? (três letras, 4 algarismos).

Mas podemos calcular de forma diferente. Basta multiplicar todas as opções de comida disponiveis: 2 . 2 . 2 . 3 = 24 .

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: