Matriz inversa

Sabemos calcular o inverso de um número real e o inverso de uma matriz segue o mesmo conceito. Quando queremos encontrar o inverso de um número real temos que nos orientar pela seguinte definição:

Sendo dois números reais, t será inverso de g, se somente se, t . g ou g . t for igual a 1.

Quando um número real é inverso do outro, indicamos o inverso com um expoente -1:
1 / 5 = 5-1, dizemos que 1 /5 é o inverso de 5, pois se multiplicarmos 1 / 5 . 5 = 1

Dizemos que uma matriz terá uma matriz inversa se for quadrada e se o produto das duas matrizes for igual a uma matriz identidade quadrada de mesma ordem das outras.

Dada duas matrizes quadradas C e D, C será inversa de D se, somente se, C . D ou D . C for igual a In. Portanto, dizemos que
C = D-1 ou D = C-1.

Exemplo 1:
Verifique se a matriz A = e a matriz B = são inversas entre si.

Para que seja verdade o produto A . B = I2.

Portanto, concluímos que as matrizes A e B não são inversas.

Exemplo 2:
Verifique se as matrizes G= e K= são inversas entre si.

Para que seja verdade o produto de G . K = I3

Portanto, concluímos que as matrizes G e K são inversas entre si.

Fonte: http://www.brasilescola.com/

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: