Comprimento de um Arco

Dada uma circunferência de centro O, raio r e dois pontos A e B pertencentes à circunferência, temos que a distância entre os pontos assinalados é um arco de circunferência. O comprimento de um arco é proporcional à medida do ângulo central, quanto maior o ângulo, maior o comprimento do arco; e quanto menor o ângulo, menor o comprimento do arco.

Para determinarmos o comprimento de uma circunferência utilizamos a seguinte expressão matemática: C = 2*π*r. A volta completa em uma circunferência é representada por 360º. Vamos realizar uma comparação entre o comprimento da circunferência em medida linear (ℓ) e medida angular (α), observe:

linear

angular

2*π*r

360º

 α

Essa expressão pode ser utilizada para determinar o comprimento do arco de uma circunferência de raio r e ângulo central α em graus. Nesses casos utilize π = 3,14.

Caso o ângulo central seja dado em radianos, utilizamos a seguinte expressão: ℓ = α * r.

Exemplo 1

Determine o comprimento de um arco com ângulo central igual a 30º contido numa circunferência de raio 2 cm.

ℓ = α * π * r / 180º
ℓ = 30º * 3,14 * 2 / 180º
ℓ = 188,40 / 180
ℓ = 1,05 cm

O comprimento do arco será de 1,05 centímetros.

Exemplo 2

O ponteiro dos minutos de um relógio de parede mede 10 cm. Qual será o espaço percorrido pelo ponteiro após 30 minutos?

Veja a figura do relógio:

ℓ = α * π * r / 180º
ℓ = 180º * 3,14 * 10 / 180º
ℓ = 5652 / 180
ℓ = 31,4 cm

O espaço percorrido pelo ponteiro dos minutos será de 31,4 centímetros.

Exemplo 3

Determine o comprimento de um arco com ângulo central medindo π/3 contido numa circunferência de 5 cm de raio.

ℓ = α * r
ℓ = π/3 * 5
ℓ = 5π/3
ℓ = 5*3,14 / 3
ℓ = 15,7 / 3
ℓ = 5,23 cm

Exemplo 4

Um pêndulo de 15 cm de comprimento oscila entre A e B descrevendo um ângulo de 15º. Qual é o comprimento da trajetória descrita pela sua extremidade entre A e B?

ℓ = α * π * r / 180º
ℓ = 15º * 3,14 * 15 / 180º
ℓ = 706,5 / 180
ℓ = 3,9 cm

Fonte:http://www.brasilescola.com/

Veja também:

Trigonometria – Introdução

Teorema de Pitágoras

Seno, Cosseno e Tangente de Ângulos Agudos

Ângulos Notáveis

Secante, Cossecante e Cotangente

Circunferência Trigonométrica

Simetria no Círculo Trigonométrico

Relação Fundamental da Trigonometria

Arcos com Mais de uma Volta

Função trigonométrica do arco duplo e arco metade

Fórmulas de transformação de soma em produto

Equações Trigonométricas

Funções Trigonométricas

Resumo das fórmulas Trigonométricas

Lei do Cosseno e Lei do Seno

Aplicações da Lei do Seno e Lei do Cosseno

Aplicações Trigonométricas na Física

Arcos e Movimento Circular

Comprimento de uma Curva

Conversões de Medidas de Ângulos

Calculadora Científica na Trigonometria

Demonstrações Trigonométricas

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: