Funções Trigonométricas

No círculo trigonométrico temos arcos que realizam mais de uma volta, considerando que o intervalo do círculo é [0, 2π], por exemplo, o arco dado pelo número real x = 5π/2, quando desmembrado temos: x = 5π/2 = 4π/2 + π/2 = 2π + π/2. Note que o arco dá uma volta completa (2π = 2*180º = 360º), mais um percurso de 1/4 de volta (π/2 = 180º/2 = 90º). Podemos associar o número x = 5π/2 ao ponto P da figura, o qual é imagem também do número π/2. Existem outros infinitos números reais maiores que 2π e que possuem a mesma imagem. Observe:

9π/2 = 2 voltas e 1/4 de volta
13π/2 = 3 voltas e 1/4 de volta
17π/2 = 4 voltas e 1/4 de volta

Podemos generalizar e escrever todos os arcos com essa característica na seguinte forma: π/2 + 2kπ, onde k Є Z. E de uma forma geral abrangendo todos os arcos com mais de uma volta, x + 2kπ.

Estes arcos são representados no plano cartesiano através de funções circulares como: função seno, função cosseno e função tangente.

Características da função seno

É uma função f : R → R que associa a cada número real x o seu seno, então f(x) = senx. O sinal da função f(x) = senx é positivo no 1º e 2º quadrantes, e é negativo quando x pertence ao 3º e 4º quadrantes. Observe:

Gráfico da função f(x) = senx

Características da função cosseno

É uma função f : R → R que associa a cada número real x o seu cosseno, então f(x) = cosx.  O sinal da função f(x) = cosx é positivo no 1º e 4º quadrantes, e é negativo quando x pertence ao 2º e 3º quadrantes. Observe:

Gráfico da função f(x) = cosx

Características da função tangente

É uma função f : R → R que associa a cada número real x a sua tangente, então f(x) = tgx.
Sinais da função tangente:

 Valores positivos nos quadrantes ímpares.
 Valores negativos nos quadrantes pares.
 Crescente em cada valor.

Gráfico da função tangente

Fonte: http://www.brasilescola.com/

Veja também:

Trigonometria – Introdução

Teorema de Pitágoras

Seno, Cosseno e Tangente de Ângulos Agudos

Ângulos Notáveis

Secante, Cossecante e Cotangente

Circunferência Trigonométrica

Simetria no Círculo Trigonométrico

Relação Fundamental da Trigonometria

Arcos com Mais de uma Volta

Comprimento de um Arco

Função trigonométrica do arco duplo e arco metade

Fórmulas de transformação de soma em produto

Equações Trigonométricas

Resumo das fórmulas Trigonométricas

Lei do Cosseno e Lei do Seno

Aplicações da Lei do Seno e Lei do Cosseno

Aplicações Trigonométricas na Física

Arcos e Movimento Circular

Comprimento de uma Curva

Conversões de Medidas de Ângulos

Calculadora Científica na Trigonometria

Demonstrações Trigonométricas

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: