A Função Exponencial e Logaritmos nas diversas áreas do conhecimento

Exemplo 1 – Matemática Financeira

(UERJ-2003) Jorge quer vender seu carro por R$ 40.000,00. Pedro, para comprá-lo, dispõe de R$ 5.000,00, e aplica esse valor em um investimento que rende juros compostos a uma taxa de 28% a cada dois anos. Considere que a desvalorização do carro de Jorge seja de 19% a cada dois anos, calculada sobre o valor do carro no período de dois anos imediatamente anterior.Calcule o tempo mínimo em que Pedro terá dinheiro suficiente para comprar o carro de Jorge. Utilize, em seus cálculos, log 2 = 0,30 e log 3 = 0,48.

Devemos calcular o montante utilizando a valorização do dinheiro aplicado e a desvalorização do carro. Devemos descobrir quanto tempo levará para que os montantes sejam iguais; para isso, façamos então o cálculo de cada montante.

Dinheiro aplicado


Desvalorização do carro

Note que na expressão do montante referente à desvalorização do carro o sinal é negativo, pois o carro irá desvalorizar 19% a cada dois anos.

Como queremos encontrar o tempo em que os montantes serão iguais, devemos igualar os montantes.

Com isso, teremos:

Lembre-se da relação que o enunciado lhe deu, foi informado apenas o log2 e o log3, portanto devemos organizar os logaritmandos para que sejam escritos como potências dos números 2 e 3.

Sendo assim, voltemos à expressão a ser calculada.

Aplicando as propriedades de logaritmo que diz que:

Temos que:

Portanto, apenas depois de 10 anos Pedro teria dinheiro para comprar o carro de Jorge.

Note que o único passo “complicado” foi o que precisava escrever os números como potências de 2 e 3. Mas a partir da reflexão sobre os dados que o problema oferece, saberemos que quando nos depararmos com situações como esta, o procedimento será parecido. O restante da resolução foi solucionado através de operações e propriedades dos logaritmos.

Exemplo 2: Matemática Financeira 
Uma pessoa aplicou a importância de R$ 500,00 numa instituição bancária que paga juros mensais de 3,5%, no regime de juros compostos. Quanto tempo após a aplicação o montante será de R$ 3 500,00?

Resolução:
Nos casos envolvendo a determinação do tempo e juros compostos, a utilização das técnicas de logaritmos é imprescindível.

Fórmula para o cálculo dos juros compostos: M = C * (1 + i)t. De acordo com a situação problema, temos:

M (montante) = 3500
C (capital) = 500
i (taxa) = 3,5% = 0,035
t = ?

M = C * (1 + i)t
3500 = 500 * (1 + 0,035)t
3500/500 = 1,035t
1,035t = 7

Aplicando logaritmo

log 1,035t = log 7
t * log 1,035 = log 7 (utilize tecla log da calculadora científica )
t * 0,0149 = 0,8451
t = 0,8451 / 0,0149
t = 56,7

O montante de R$ 3 500,00 será originado após 56 meses de aplicação.

Exemplo 3 – Geografia 
Em uma determinada cidade, a taxa de crescimento populacional é de 3% ao ano, aproximadamente. Em quantos anos a população desta cidade irá dobrar, se a taxa de crescimento continuar a mesma?

População do ano-base = P0
População após um ano = P0 * (1,03) = P1
População após dois anos = P0 * (1,03)2= P2

População após x anos = P0 * (1,03)x = Px

Vamos supor que a população dobrará em relação ao ano-base após x anos, sendo assim, temos:

Px = 2*P0
P0 * (1,03)x = 2 * P0
1,03x = 2

Aplicando logaritmo

log 1,03x = log 2
x * log 1,03 = log2
x * 0,0128 = 0,3010
x = 0,3010 / 0,0128
x = 23,5

A população dobrará em aproximadamente 23,5 anos.

Exemplo 4 – Química
Determine o tempo que leva para que 1000 g de certa substância radioativa, que se desintegra a taxa de 2% ao ano, se reduza a 200 g. Utilize a seguinte expressão:
Q = Q0 * e–rt, em que Q é a massa da substância, r é a taxa e t é o tempo em anos.

Q = Q0 * e–rt
200 = 1000 * e–0,02t
200/1000 = e–0,02t
1/5 = e–0,02t (aplicando definição)
–0,02t = loge1/5
–0,02t = loge5–1
–0,02t = –loge5
–0,02t = –ln5 x(–1)
0,02t = ln5
t = ln5 / 0,02
t = 1,6094 / 0,02
t = 80,47

A substância levará 80,47 anos para se reduzir a 200 g

Exemplo 5: Química (Radioatividade)

 Os químicos, para determinar o tempo de desintegração de uma substância radioativa, utilizam a fórmula Q = Q_0 \cdot 2,71^{-r . t}, em que Q é a massa da substância, Q0 é a massa inicial, r é taxa de redução da radiatividade e t é o tempo em anos.  Podemos calcular o tempo gasto para 300 g de determinada substância se reduzir a 200g,  a uma taxa de 7% ao ano.

Exemplo 6: Medicina

Quando um paciente ingere um medicamento, a droga entra na corrente sanguínea e, ao passar pelo fígado e pelos rins, é metabolizada e eliminada a uma taxa que é proporcional à quantidade presente no corpo. Suponha uma super-dose de um medicamento cujo princípio ativo é de 500 mg. A quantidade q desse princípio ativo que continua presente no organismo t horas após a ingestão é dada pela expressão q(t) = 500 . (0,6)t . Usando ln3 = 1,1, ln5 = 1,6 e ln2 = 0,7, é possível obter o tempo necessário para que a quantidade dessa droga presente no corpo do paciente seja menor que 100 mg.

  1. Nenhum comentário ainda.
  1. No trackbacks yet.

Deixe seu comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: