Soma e subtração de arcos

Adição de arcos

Cosseno da soma

Circulocosseno.png

Considere a figura ao lado. Sejam três pontos  A \;\!,  B \;\! C \;\! pertencentes à circunferência , cujas coordenadas são  A \left ( \cos a , \mathrm{sen}\, a \right ) \;\!,  B \left ( \cos \left ( a + b \right ) , \mathrm{sen}\, \left ( a + b \right ) \right ) \;\! C \left ( \cos b , -\mathrm{sen}\, b \right ) \;\!. Os arcos  \widehat{P B}  \widehat{C A } têm medidas iguais, logo as cordas  \overline{P B}  \overline{C A} também têm a mesma medida. Após aplicarmos a fórmula da distância entre dois pontos da Geometria analítica, temos:

 d_{PB}^2 = 2 - 2\cdot\cos \left ( a + b \right ) \;\!

 d_{CA}^2 = 2 - 2\cdot\cos a\cdot\cos b + 2\cdot\mathrm{sen}\, a\cdot\mathrm{sen}\, b  \;\!

Ao igualarmos as duas expressões, temos a fórmula:

      \cos \left ( a + b \right ) = \cos a\cdot\cos b - \mathrm{sen}\, a\cdot\mathrm{sen}\, b \;\!

Seno da soma

Sabemos que  \mathrm{sen}\, x = \cos \left ( \frac{\pi}{2} - x \right ) . A partir disto e sendo  x = a + b \;\!, obtemos:

  •  \mathrm{sen}\, \left ( a + b \right ) = \cos \left [ \frac{\pi}{2} - \left ( a + b \right ) \right ] = \cos \left [ \left ( \frac{\pi}{2} - a \right ) - b \right ]

Utilizando a fórmula do cosseno da diferença de dois arcos nessa última expressão:

  •  \cos \left ( \frac{\pi}{2} - a \right )\cdot\cos b + \mathrm{sen}\, \left ( \frac{\pi}{2} - a \right )\cdot\mathrm{sen}\, b

Substituindo  \cos \left ( \frac{\pi}{2} - a \right ) = \mathrm{sen}\, a  \mathrm{sen}\, \left ( \frac{\pi}{2} - a \right ) = \cos a nesta expressão, então:

        \mathrm{sen}\, \left ( a + b \right ) = \mathrm{sen}\, a\cdot\cos b + \mathrm{sen}\, b\cdot\cos a \;\!

Tangente da soma

Sabendo que  \tan x = \frac{\mathrm{sen}\, x}{\cos x} e utilizando as fórmulas anteriores para soma de senos e cossenos, podemos facilmente conseguir uma expressão para  \tan \left ( a + b \right ) \;\!:

  •  \tan \left ( a + b \right ) = \frac{\mathrm{sen}\, \left ( a + b \right )}{\cos \left ( a + b \right )} = \frac{\mathrm{sen}\, a\cdot\cos b + \mathrm{sen}\, b\cdot\cos a}{\cos a\cdot\cos b - \mathrm{sen}\, a\cdot\mathrm{sen}\, b}

 = \frac{\frac{\mathrm{sen}\, a\cdot\cos b + \mathrm{sen}\, b\cdot\cos a}{\cos a\cdot\cos b}}{\frac{\cos a\cdot\cos b - \mathrm{sen}\, a\cdot\mathrm{sen}\, b}{\cos a\cdot\cos b}}

Então:

     \tan \left ( a + b \right ) = \frac{\tan a + \tan b}{1 - \tan a\cdot\tan b} 

Vale lembrar que essa fórmula só pode ser usada se  a \ne \frac{\pi}{2} + k \pi, b \ne \frac{\pi}{2} + k \pi  a + b \ne \frac{\pi}{2} + k \pi, k \in \mathbb{Z} , porque a relação  \tan x = \frac{\mathrm{sen}\, x}{\cos x} só é válida se e somente se  x \ne \frac{\pi}{2}, \frac{3 \pi}{2}.

Cotangente da soma

Como  \cot x = \frac{\cos x}{\mathrm{sen}\, x} , podemos obter, de maneira semelhante à formula da tangente da soma, uma expressão para  \cot \left ( a + b \right ) \;\!:

  •  \cot \left ( a + b \right ) = \frac{\ cos \left ( a + b \right )}{\mathrm{sen}\, \left ( a + b \right )} = \frac{\cos a\cdot\cos b - \mathrm{sen}\, a\cdot\mathrm{sen}\, b}{\mathrm{sen}\, a\cdot\cos b + \mathrm{sen}\, b\cdot\cos a}

 = \frac{\frac{\cos a\cdot\cos b - \mathrm{sen}\, a\cdot\mathrm{sen}\, b}{\mathrm{sen}\, a\cdot\mathrm{sen}\, b}}{\frac{\mathrm{sen}\, a\cdot\cos b + \mathrm{sen}\, b\cdot\cos a}{\mathrm{sen}\, a\cdot\mathrm{sen}\, b}}

Simplificando, temos:

        \cot \left ( a + b \right ) = \frac{\cot a\cdot\cot b - 1}{\cot a + \cot b}

Como  \cot x = \frac{\cos x}{\mathrm{sen}\, x} é válida se e somente se  x \ne 0, \pi, 2\pi \;\!, a identidade que demonstramos acima só pode ser usada se  a \ne k \pi, b \ne k \pi \;\! a + b \ne k \pi, k \in \mathbb{Z} \;\!.

Exemplos

  • Calcule:
 \left ( 1 \right ) \;\!  \cos 75^\circ \;\!:  \left ( 2 \right ) \;\!  \mathrm{sen}\, 105^\circ \;\!:  \left ( 3 \right ) \;\!  \tan 105^\circ \;\!:  \left ( 4 \right ) \;\!  \cot 75^\circ \;\!
    • Resolução
 \left ( 1 \right ) \;\!  \cos 75^\circ = \cos \left ( 30^\circ + 45^\circ \right ) = \cos 30^\circ \cdot \cos 45^\circ - \mathrm{sen}\, 30^\circ \cdot \mathrm{sen}\, 45^\circ

 = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} :  \left ( 2 \right ) \;\!  \mathrm{sen}\, 105^\circ = \mathrm{sen}\, \left ( 45^\circ + 60^\circ \right ) = \mathrm{sen}\, 45^\circ \cdot \cos 60^\circ + \mathrm{sen}\, 60^\circ \cdot \cos 45^\circ  = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4} :  \left ( 3 \right ) \;\!  \tan 105^\circ = \tan \left ( 45^\circ + 60^\circ \right ) = \frac{\tan 45^\circ + \tan 60^\circ}{1 - \tan 45^\circ \cdot \tan 60^\circ}  = \frac{1 + \sqrt{3}}{1 - 1 \cdot \sqrt{3}} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}:  \left ( 4 \right ) \;\!  \cot 75^\circ = \cot \left ( 30^\circ + 45^\circ \right ) = \frac{\cot 30^\circ \cdot \cot 45^\circ - 1}{\cot 30^\circ + \cot 45^\circ}  = \frac{\sqrt{3} \cdot 1 - 1}{\sqrt{3} + 1} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}

Subtração de arcos

Cosseno da diferença

Para calcular  \cos \left ( a - b \right ) \;\!, fazemos uso da igualdade  a - b = a + \left ( -b \right ) \;\! na fórmula do cosseno da soma, conforme a seguir:

  •  \cos \left ( a - b \right ) = \cos \left [ a + \left ( -b \right ) \right ] \;\!

 = \cos a\cdot\cos \left ( -b \right ) - \mathrm{sen}\, a\cdot\mathrm{sen}\, \left ( -b \right ) \;\!  = \cos a\cdot\cos b - \mathrm{sen}\, a\cdot\left ( -\mathrm{sen}\, b \right ) \;\!

Então:

     \cos \left ( a - b \right ) = \cos a\cdot\cos b + \mathrm{sen}\, a\cdot\mathrm{sen}\, b \;\!

Seno da diferença

Podemos fazer a mesma substituição da igualdade  a - b = a + \left ( -b \right ) \;\! para encontrar as outras relações de diferença de arcos. Para o seno, usaremos a fórmula do seno da soma e a igualdade citada acima, conforme a seguir:

  •  \mathrm{sen}\, \left ( a - b \right ) = \mathrm{sen}\, \left [ a + \left ( -b \right ) \right ] = \mathrm{sen}\, a\cdot\cos \left ( -b \right ) + \mathrm{sen}\, \left ( -b \right )\cdot\cos a \;\!

Logo,

     \mathrm{sen}\, \left ( a - b \right ) = \mathrm{sen}\, a\cdot\cos b - \mathrm{sen}\, b\cdot\cos a \;\!

Tangente da diferença

Usando novamente a igualdade  a - b = a + \left ( -b \right ) \;\! e, desta vez, a fórmula da tangente da soma:

  •  \tan \left ( a - b \right ) = \tan \left [ a + \left ( - b \right ) \right ] = \frac{\tan a + \tan \left ( -b \right )}{1 - \tan a\cdot\tan \left ( -b \right )}

Simplificando, temos:

    \tan \left ( a - b \right ) = \frac{\tan a - \tan b}{1 + \tan a\cdot\tan b} 

Pelos motivos já citados anteriormente, esta fórmula só é válida se  a \ne \frac{\pi}{2} + k \pi, b \ne \frac{\pi}{2} + k \pi  a - b \ne \frac{\pi}{2} + k \pi, k \in \mathbb{Z} .

Cotangente da diferença

Mais uma vez, usaremos a igualdade  a - b = a + \left ( -b \right ) \;\! e, desta vez, a fórmula da cotangente da soma:

  •  \cot \left ( a - b \right ) = \cot \left [ a + \left ( -b \right ) \right ] = \frac{\cot a\cdot\cot \left ( -b \right ) - 1}{\cot a + \cot \left ( -b \right )}

Logo, obtemos a identidade:

     \cot \left ( a - b \right ) = \frac{\cot a\cdot\cot b + 1}{\cot b - \cot a} 

Está fórmula só pode ser aplicada se  a \ne k \pi, b \ne k \pi \;\! a - b \ne k \pi, k \in \mathbb{Z} \;\!.

Exemplos

  • Calcule:
 \left ( 1 \right ) \;\!  \cos 15^\circ \;\!:  \left ( 2 \right ) \;\!  \mathrm{sen}\, 15^\circ \;\!:  \left ( 3 \right ) \;\!  \cot 15^\circ \;\!
    • Resolução

 \left ( 1 \right ) \;\!  \cos 15^\circ = \cos 15^\circ \left ( 45^\circ - 30^\circ \right ) = \cos 45^\circ \cdot \cos 30^\circ + \mathrm{sen}\, 45^\circ \cdot \mathrm{sen}\, 30^\circ  = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}
 \left ( 2 \right ) \;\!  \mathrm{sen}\, 15^\circ = \mathrm{sen}\, 15^\circ \left ( 45^\circ - 30^\circ \right ) = \mathrm{sen}\, 45^\circ \cdot \cos 30^\circ - \mathrm{sen}\, 30^\circ \cdot \cos 45^\circ  = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}
 \left ( 3 \right ) \;\!  \cot 15^\circ = \cot 15^\circ \left ( 60^\circ - 45^\circ \right ) = \frac{\cot 60^\circ \cdot \cot 45^\circ + 1}{\cot 45^\circ - \cot 60^\circ}  = \frac{\frac{\sqrt{3}}{3} \cdot 1 + 1}{1 - \frac{\sqrt{3}}{3}} = \frac{3 + \sqrt{3}}{1 - \sqrt{3}}

  • Dados  \tan \alpha = 1 \;\! \tan \beta = \frac{1}{2} \;\!, calcule  \tan \left ( \alpha - \beta \right ) \;\!.
    • Resolução

 \tan \left ( \alpha - \beta \right ) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}  = \frac{1 - \frac{1}{2}}{1 + 1 \cdot \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}

  1. leticia gonçalves
    23/07/2015 às 19:57

    muito bom mesmo, me ajudou bastante
    obrigadoo!

  2. TorcidaJovem
    31/10/2012 às 19:55

    Otimo site parabens estava com muitas duvidas e consegui enterder.vo divulgar o site vlw.!

  3. Farias Neto
    18/12/2011 às 16:31

    ótimo material, muito bom, me ajudou muuuito!!
    Vou recomendar o Site!!
    Valeu mesmo!!!

  4. 18/12/2011 às 16:30

    Muito obrigado, me ajudou muuuito.
    Valeu mesmo, ótimo material, vou recomendar!!!
    OBRIGADO !!!

  1. No trackbacks yet.

Deixe seu comentário